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Abstract

A decomposition of identity is given as a complex integral over the coherent
states associated with a class of shape-invariant self-similar potentials. There
is a remarkable connection between these coherent states and Ramanujan’s
integral extension of the beta function

PACS numbers: 02.20.Uw, 03.65.Fd

1. Introduction

Supersymmetric quantum mechanics is the study of pairs of Hamiltonians with identical energy
spectra and with eigenstates that are different, but can be transformed into each other [1, 2].
Some, but not all, such pairs of Hamiltonians share an integrability condition called shape
invariance [3]. In [4], it was shown that the shape-invariance condition has an underlying
algebraic structure and the associated Lie algebras were identified. Utilizing this algebraic
structure a general definition of coherent states for shape-invariant potentials was introduced by
several authors [5, 6]. These coherent states are eigenstates of the annihilation operator of the
shape-invariant system. When the shape-invariant system is taken to be the standard harmonic
oscillator, g-analogue harmonic oscillator or SU (1, 1)-covariant system, those coherent states
reduce to the well-known harmonic oscillator coherent states, g-analogue coherent states or
the Barut—Girardello SU (1, 1) coherent states [7], respectively.

A decomposition of the identity operator using g-integration is available in the literature
[8]. In this paper, we use shape-invariant algebraic techniques to obtain a decomposition of
the identity as a regular integral over complex variables. It turns out that such an integral is
very closely related to an integral evaluated by Ramanujan in studying integral expansion of
the beta function.
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In the next section, we review the relevant formulae for supersymmetric quantum
mechanics and the shape invariance. In section 3, we introduce generalized coherent states
for shape-invariant systems. In section 4 we show that, when the appropriate shape-invariant
system is chosen, these reduce to the g-analogue coherent states. The proof of completeness
of these coherent states in terms of the Ramanujan integral is given in section 5. Several brief
remarks in section 6 conclude the paper.

2. Supersymmetric quantum mechanics and shape invariance

In one dimension supersymmetric quantum mechanics uses the operators [1]

A=Wkx)+ p (2.1)

1
V2m
Al = Wix) — ﬁf) (2.2)

to write the Hamiltonian in the form
H — E,= ATA. (2.3)

Here, Ej is the energy of the ground state, the wavefunction of which is annihilated by the
operator A:

A|Wy) = 0. (2.4)

To illustrate the underlying algebraic structure the shape-invariance condition can be written
in terms of the operators defined in equations (2.1) and (2.2) as [4]

A(an)Al(a)) = AT(ar)A(a2) + R(ay) (2.5)

where a; » are a set of parameters. The parameter a; is a function of a; and the remainder
R(a) is independent of X and p. Introducing the similarity transformation that replaces a;
with a; in a given operator

T(a))O(a)T'(@a1) = O(a) (2.6)
and the operators

B, = Al(a)T(a)) @7

B_ =Bl =Ta)A(a) (2.8)

the Hamiltonian takes the form

H-E,=B.B_. (2.9)
Using equations (2.6)—(2.8) one can show that the commutation relations

[B-, B.] = T'(a)R(a)T(a1) = Rao) (2.10)
and

[B+. R(ap)] = [R(a1) — R(ap)]B. (2.11)

[B,, {R(a1) — R(ap)}B+]={[R(a2) — R(a1)] — [R(a1) — R(ap)} B2 (2.12)

and the Hermitian conjugates of the relations given in equations (2.11) and (2.12) are satisfied
[4]. In the most general case the resulting Lie algebra is infinite dimensional.
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One class of shape-invariant potentials are reflectionless potentials with an infinite number
of bound states, also called self-similar potentials [9, 10]. Shape invariance of such potentials
were studied in detail in [11, 12]. For such potentials the parameters are related by a scaling:

a, =q" 'a. (2.13)
For the simplest case studied in [12] the remainder of equation (2.5) is given by

R(ay) = ca; (2.14)
where ¢ is a constant and the operator introduced in equation (2.6) by

T(ay) :exp{(logq)alaial}. (2.15)
For this shape-invariant potential one can show that the scaled operators

Sy = JgB.R(a))~"? (2.16)
and

S_ =@l = /qR@)"?B_ (2.17)
satisfy the standard ¢-deformed oscillator relation [13]

§_8,—¢8.8_=1. (2.18)

The Hamiltonian takes the form
H— Ey= R(a))S.5_. (2.19)
The energy eigenvalues are

l—gq

n

E, = R(a1) (2.20)
l—gq
and the normalized eigenstates are given by
=9 & .,
In) = [ ———(5,)"|0) (2.21)
(45 @n

where the g-shifted factorial (q; q), is defined as (z; ¢)o = 1 and (z; ¢), = ]_[;f;(]](l —zg7),
n=1,2,....

One should point out that g-generalizations not only of the standard harmonic oscillator,
but also of other exactly solvable problems are available in the literature (see, e.g., [14]).
Shape-invariance properties of such generalizations are yet unexplored.

3. Coherent states

Coherent states for shape-invariant potentials were introduced in [5, 6]. Here we follow the
notation of [6]. Using the right inverse of B_

A 'B, = B! (B_LB~'=1) 3.1)
the coherent state for shape-invariant potentials with an infinite number of energy eigenstates
was defined in [6] as

|2)e = [0) +2BZ'|0) + 22 BZ2|0) + - - -

1 (3.2)

IR i
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where |0) is the ground state of the Hamiltonian in equation (2.9). The coherent state in
equation (3.2) is an eigenstate of the operator B_:

B_|z)c = zl2).. (3.3)

In this paper, we use a slightly more general definition of the coherent state. Introducing
an arbitrary functional f[R(a;)] of the remainder in equation (2.5), we define the coherent
state to be

K
) =Y (zf[R(@)]1B")" |0) G4
n=0
where the upper limit K in the sum, depending on the nature (the number of eigenstates) of the
potential, can be either finite or infinite. Note that one can define a new variable 7/ = zf (a;),

i.e. this generalization permits z to be a function of the variables a;, a,, as, . ... One can write
equation (3.4) explicitly as

R(a R(a R(a
12) = |0) +2 JIR( 1)]|l>+ »  SfIR(aD]f[R(a2)]

JR@) | JR@)IR(@) + R@)]
. FIR@)If[R@)]fIR(@3)]

+z [3) +--- 3.5
VR(a3)[R(a2) + R(a3)][R(a3) + R(a2) + R(a1)]
where |n) is the nth excited state of the system:
In) = [H~"?B.1"|0). (3.6)

(cf with equation (2.21)).

If the ground state is normalized, i.e. (0 | 0) = 1, then all the excited states given by
equation (3.6) are normalized as well. If the number of energy eigenstates is infinite the
coherent state defined in equation (3.4) is also an eigenstate of the operator B_:

B_|z) = zf[R(ap)]lz). 3.7
The additional condition
« 0
[B- — Zf[R(aO)]]8_ZIZ> = f[R(ao)]lz) (3.8)

is also satisfied.

4. g-coherent states for shape-invariant systems

We now show that when R(a;) is given by equation (2.14) and is subject to the scaling
transformation given in equation (2.13) the coherent state of equation (3.4) reduces to the
standard g-coherent states introduced in [15, 16]. In this case, equation (3.4) can be written in
the form

- 1 — n/2 n
2} =Y (fIR@)]f[R(@)]- - FIR@ ) S nin-njs 2 )

poars NCR) JiR@oT "

We now choose f[R(a,)] = R(a,). The coherent state of equation (4.1) takes the form

(1 —g)"? (n1—1)/4
2) = ) —F—=—=4"""""VIR(@@n]"Z"|n). (4.2)
; NACHDR
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Using the normalized eigenstates given in equation (2.21), the above equation can be written

as
00

1 — )n nn— &\
2y = > U292 poevss (R G@IS,) o) (4.3)
= (@ q)n
Using the g-exponential utilized in [17] (see also [18, 19])
00 q’”’z
E;") (x) = x" 4.4)
= (g q)n

and the identity +/ [R(al)].§‘+=1§+, the coherent state can be written as a generalized
exponential:

-9 4
l2) = <Wz3+ 10). (4.5)
Finally, introducing the variable

V(1 —=q)
c=Y""P /Ra): (4.6)
va
the coherent state can also be written as

qn(n+])/4

= —"|n). 4.7
1£) E&ﬂﬁ@um (4.7)

The norm of this state is also given by a generalized exponential:
€ley = EM @12, (4.8)

Equation (4.8) is useful when writing path integrals in coherent-state representation.

5. Completeness of g-coherent states and Ramanujan integrals

In this section, we investigate the completeness relation for g-analogue coherent states given
in the previous section. One way to obtain a decomposition of identity using g-analogue
coherent states is to use Jackson’s formula for the g-differentiation and g-integration [20].
Such a completeness relation was introduced by the authors of [8] (see also [21]). In the
current work we introduce a completeness relation without using g-integration.

Our main result is that the decomposition of identity for the coherent states of
equation (4.7) is given by

%
1=/%@ : . 5.1)
mi (=logq) (=817 ¢)oo

which we prove in this section. (In the above relation 1 is the identity operator in the Hilbert
space of the g-analogue harmonic oscillator.)

We change the variables { = /7 ¢, using equation (4.7) to write the coherent states in
terms of the eigenstates of the Hamiltonian, and perform the 0-integration to obtain

1 o n(n+1)/2 0 "

I = D In) (n| x/ dr— (5.2)
(=logq) “= (9 @)n o I

The last integral was evaluated by Ramanujan in an attempt to generalize integral definition

of the beta function [22]. (An elementary proof is given by Askey [23].) It is given by

= " (4;: Dn
/0 dr —r D = 1 D/2 (—loggqg). (5.3)
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Inserting equation (5.3) into equation (5.2) provides the proof of equation (5.1):
oo
I =Z|n)(n| =1. (5.4)
n=0

As we mentioned above another decomposition of identity for g-coherent states is given in [8].
In this reference a g-analogue of the Euler formula for I'(z) expressed as a g-integral is utilized
instead of the Ramanujan integral, equation (5.3). Consequently, the authors of [8] obtained
the resolution of identity for g-analogue harmonic oscillators as a g-integral in contrast to our
result, equation (5.4), where this resolution is expressed as an ordinary integral over complex
variables.

6. Conclusions

In this paper we presented an overcompleteness relation for the g-analogue coherent states as
a complex integral. In arriving at this result we utilized shape-invariant algebraic techniques.
Such a result could be very useful in building coherent states of path integrals [24] for
g-analogue systems. Of course, such path integrals can also be defined over g-integrals.
However, if one wishes to approximate these path integrals using saddle-point approximations
or numerically evaluate them using Monte Carlo techniques, ordinary path integrals defined
over complex variables present several advantages over the g-integrals. Among these are the
presence of a continuous path to find stationary phases and the existence of positive-definite
probabilities to do Monte Carlo integration.

Coherent states for the ordinary harmonic oscillator have a dynamical interpretation. If
a forced harmonic oscillator is in its ground state for # = 0, it evolves into the harmonic
oscillator coherent state. As was shown in [6], the coherent states described here, in general,
do not have such a simple dynamical interpretation. However, the evolution operator for the
g-analogue of the forced harmonic oscillator Hamiltonian

h(t) = B,B_+ f(0)[eR@/ B, 4 B_ e iR/ (6.1)

where f(¢) is an arbitrary function of time, can be written as a path integral where the
integration path is given by the time dependence of the variable ¢ of equation (5.1) (cf [24]
for the forced harmonic oscillator).

Our decomposition of identity can easily be generalized to multi-dimensional g-oscillators
and can be used to study, for example, the dynamics of SL,(n), which can be constructed
from such oscillators using a g-deformed Levi-Civita tensor [25]. (For a review of various
applications of quantum groups see, e.g., [26].) Coherent states for harmonic oscillator
representation of orthosymplectic superalgebras along with their overcompleteness relations
are given in [27, 28]. (For an application of such representations see [29].) Our techniques
can be utilized to determine the integration measures for the g-extensions of superalgebras.

Askey reports that Hardy mentions the Ramanujan integral of equation (5.3) to be new and
interesting [23]. Askey further remarks that this integral is even more interesting than Hardy
seems to have thought it was and points out that it does not seem to have arisen in applications
very often. As we demonstrated, this integral seems to play a major role in building the Hilbert
space for the g-oscillator Hamiltonian.
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